Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus.

نویسندگان

  • Wei Zhang
  • Zili Yi
  • Jiangfeng Huang
  • Fengcheng Li
  • Bo Hao
  • Ming Li
  • Shufen Hong
  • Yezi Lv
  • Wei Sun
  • Arthur Ragauskas
  • Fan Hu
  • Junhua Peng
  • Liangcai Peng
چکیده

In this study, total 80 typical Miscanthus accessions were examined with diverse lignocellulose features, including cellulose crystallinity (CrI), degree of polymerization (DP), and mole number (MN). Correlation analysis revealed that the crude cellulose CrI and MN, as well as crystalline cellulose DP, displayed significantly negative influence on biomass enzymatic digestibility under pretreatments with NaOH or H(2)SO(4) at three concentrations. By contrast, the comparative analysis of two Miscanthus samples with similar cellulose contents showed that crude cellulose DP and crystalline cellulose MN were positive factors on biomass saccharification, indicating cross effects among the cellulose levels and the three cellulose features. The results can provide insights into mechanism of the lignocellulose enzymatic digestion, and also suggest potential approaches for genetic engineering of bioenergy crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus

BACKGROUND Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples th...

متن کامل

The Minor Wall-Networks between Monolignols and Interlinked-Phenolics Predominantly Affect Biomass Enzymatic Digestibility in Miscanthus

Plant lignin is one of the major wall components that greatly contribute to biomass recalcitrance for biofuel production. In this study, total 79 representative Miscanthus germplasms were determined with wide biomass digestibility and diverse monolignol composition. Integrative analyses indicated that three major monolignols (S, G, H) and S/G ratio could account for lignin negative influence on...

متن کامل

Distinct Geographical Distribution of the Miscanthus Accessions with Varied Biomass Enzymatic Saccharification

Miscanthus is a leading bioenergy candidate for biofuels, and it thus becomes essential to characterize the desire natural Miscanthus germplasm accessions with high biomass saccharification. In this study, total 171 natural Miscanthus accessions were geographically mapped using public database. According to the equation [P(H/L| East) = P(H/L∩East)/P(East)], the probability (P) parameters were c...

متن کامل

Biomass Enzymatic Saccharification Is Determined by the Non-KOH-Extractable Wall Polymer Features That Predominately Affect Cellulose Crystallinity in Corn

Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass...

متن کامل

Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.

Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2013